The assessment of oil impregnated paper condition by electrical conductivity and permittivity

L. Badicu 1, P. V. Notingher 1, L Dumitran 1, G. Tanasescu 2, D. Popa 3 and Gh. Batir 4

1 University POLITEHNICA of Bucharest, Splaiul Independenţei, No.313, Bucharest, Romania.
3 ICMET Craiova, B-dul Decebal, no. 118 A, 200746, Craiova, Romania.
4 Electrica Serv, Romania.

The assessment of conditions and life time reserves of power transformers is generally done based on the analysis of characteristics of main components of insulation systems, namely oil and paper [1].

This paper shows the results of a study concerning thermal ageing of some pressboard samples 0.5 mm thick impregnated with NYNAS transformer oil subjected to accelerated thermal stresses at the temperature T_s which takes values between 115 and 155 °C for time intervals τ which also takes values between 0 and 800 h. For certain values of τ, the real parts (ε_r' and σ_r') and the imaginary parts (ε_r'' and σ_r'') of complex conductivity and relative permittivity, and the loss factor $tg\delta$ were measured (using a NOVOCONTROL dielectric spectrometer) for different values of measurement temperature T_m ($T_m = 30...90$ °C) and frequency f ($f = 10^3...10^7$ Hz). Variation curves of these quantities depending on ageing time τ were drawn (fig. 1 and 2).

By analyzing the results, it can be seen that, the increase of temperature and ageing time determines the increases of the ε_r' and σ_r' quantities [2] and these increases are more important in the case of low electric field frequencies. On the other hand, considering certain boundary values of ε_r', ε_r'', σ_r' and σ_r'' and $tg\delta$ quantities the life time of the pressboard can be obtained through the ageing curves. Using these results and carrying out tests on samples taken from transformers in service, their life time reserves can be estimated.

Figure 1 Variation of the real part of relative permittivity ε_r' with frequency f and temperature T_m for oil impregnated paper ($T_s = 155$ °C, $\tau = 750$ h):
1 – $T_m = 30$ °C, 2 – $T_m = 50$ °C, 3 – $T_m = 90$ °C

Figure 2 Variation with ageing time τ for oil impregnated paper: 1 - the real part of relative permittivity, 2 - the real part of electrical conductivity ($T = 155$ °C, $f = 1$ mHz).

References